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In some manufacturing processes, the quality characteristic is represented by a two-dimensional (2-D)
surface. Surface data can generally be treated as a special profile with one response variable and two
explanatory variables, for which spatial correlations are commonly observed. Existing parametric charts for
profile monitoring are unable to adequately describe the spatial correlations among variables in 2-D surface
data, and nonparametric charts cannot be applied to a 2-D data structure directly. In this study, we propose
a new chart based on the Gaussian-Kriging model, in which the spatial correlations within the 2-D surface
profile are represented by a parametric function. We construct a parametric model that considers three
components of the surface—the global trend, the spatial correlations, and independent errors. Then we
monitor the process by detecting changes in the estimated parameters. We utilize this method to monitor
a wafer-manufacturing process and compare its performance with that of an existing profile-monitoring
method through simulation.
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Surface Data.

Introduction

DUE to its e↵ectiveness in detecting the occurrence
of abnormal process failures, reducing process

variation, and improving product quality, statistical
process control (SPC) has been widely used in di-
verse industries. In traditional SPC, one or multi-
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ple variables that represent the status of the process
or the quality of the product are usually monitored
for process changes. However, due to the increasing
demand for high quality and the continuous develop-
ment of data-acquisition techniques, product quality
is sometimes represented by a two-dimensional (2-D)
surface. Thus, the monitoring of surface data has be-
come particularly important, and new techniques to
address sophisticated surface patterns are required.

To demonstrate a typical surface-monitoring sce-
nario and illustrate our monitoring scheme, a case
study of monitoring the distribution of a wafer’s
thickness is considered throughout the paper. The
wafer is the base material for all semiconductor de-
vices. Processing wafers starts with slicing thin round
silicon plates from silicon ingots. After the wafers are
sliced, they are loaded into a lapping machine and
milled under a specific pressure to improve the flat-
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FIGURE 1. Position of Measurements Across the Round
Wafer Surface. There are 3912 measurements on 10 con-
centric circles in total. Each of the eight inner circles has
400 measurements. The two outer circles hav smaller mea-
surements due to the wafer being flat.

ness and uniformity of their surfaces. The smooth-
ness and uniformity of the wafer are important qual-
ity metrics that depend directly on the manufactur-
ing process. Therefore, wafers are periodically drawn
from the product line and thickness values are mea-
sured at a number of fixed positions across the round
plate. On the wafer, a coordinate system is usually
defined based on the directions of the single-crystal
silicon material. We denote the horizon and vertical
axes of this coordinate system as x(1) and x(2), re-
spectively. We further define xi = (x(1)

i , x(2)
i ) as the

location of the ith measurement point on the wafer,
and Yi represents the thickness obtained at location
xi. In practice, thousands of measurements could be
obtained from one wafer. Figure 1 shows the loca-
tions of the measurement points of a real dataset.
The coordinates x(1) and x(2) have been rescaled
to [�1, 1]. Figure 2 shows the thickness values ob-
tained from one sample wafer after the lapping pro-
cess, where the data are in a form of a surface map.
Monitoring the surface data and detecting potential
process shift with the help of the 2-D surface map is
essential for product quality.

Currently, the industry metrics for measuring a
wafer’s quality include the average thickness value
and the total thickness variation (TTV) value. The
TTV is defined as the di↵erence between the max-
imum thickness and the minimum thickness for all
measurements on the wafer. Other metrics that are

FIGURE 2. A Two-Dimensional Surface Map Showing
the Distribution of a Wafer’s Thickness After Lapping. x(1)

and x(2) denote the coordinates of the wafer’s surface and
y is the measured thickness value at each site (in µm).

commonly utilized in the semiconductor industry to
measure wafer quality include the total indicator
reading (TIR) and the site TIR (STIR). These met-
rics reflect the variation in the thickness profile, but
they do not fully utilize the rich information con-
tained in the dataset. Consequently, even if the val-
ues fall outside the control limits, the failure patterns
are not easily revealed. Properly designed monitoring
schemes are called for to enhance the performance of
control charts.

In most cases, surface data can be treated as a par-
ticular type of profile, which is represented by a num-
ber of response variables and their corresponding ex-
planatory variables (Woodall et al. (2004)). However,
the monitoring of surface data has numerous chal-
lenges compared with common profile-monitoring
techniques. First, surface data usually exhibit spa-
tial correlations, because adjacent points typically
exhibit similar material properties and are processed
under similar conditions (Colosimo (2008)). Spatial
correlations, which are particularly significant in sur-
face data, have been observed by many researchers,
such as Walker and Wright (2002) and Williams et
al. (2007). However, most parametric regressive mod-
els, which are commonly employed to monitor pro-
files, assume that the response variable Yi and the
explanatory variable xi are related by

Yi = f(xi,�) + "i,

where f(xi,�) are fixed trends and "i are indepen-
dent error terms. Thus, the possible spatial correla-
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tion is arbitrarily disregarded. For this reason, this
field has called for more in-depth research on profile
monitoring that makes use of spatial correlations.

Besides, rich information is contained in the sur-
face data. The common practice of monitoring a pro-
file using a regressive model involves monitoring the
parameters depicting the shape of the determinis-
tic part (usually denoted by �) and the parameter
depicting the intensity of the noise (�2). However,
using the single parameter �2 to describe the devi-
ation is not adequate. Process monitoring based on
more complex data is expected to provide more in-
formation about process faults. For example, Reis
and Saraiva (2006) examined the surface profile of
paper and emphasized that the information on fine-
scale roughness and large-scale waviness is embed-
ded in the surface data. In our wafer example, the
2-D information also illustrates the thickness trend,
macro-level waviness, and micro-level roughness of
the wafer. Given the rich information available, more
e�cient process monitoring and diagnosis algorithms
should be employed.

In this paper, we focus on the Phase II monitor-
ing of the 2-D wafer surface (Woodall et al. (2004)).
By considering unique 2-D structures and spatial
correlations, we use a Gaussian-Kriging model to
characterize variations in the wafer surface. Assum-
ing the in-control process parameters are known, we
designed two related multivariate control charts for
monitoring the stability of online surface data. These
charts are capable of monitoring the trend of the sur-
face, as well as the spatial patterns, including wavi-
ness and roughness of the surface.

The remainder of this paper is organized as fol-
lows. In the next section, we review the related lit-
erature in profile-monitoring studies. After that, we
introduce the model we used for charting and our
monitoring scheme. Then, we illustrate the existence
of spatial correlation using the real wafer’s surface
data and compare our method with the multiple re-
gression method, which is modified from the existing
profile chart that does not consider spatial correla-
tion. The necessity of considering spatial correlation
and the advantage of our method are discussed in the
last section.

Review of Related Literature
in Profile Monitoring

As mentioned above, a surface dataset can be
viewed as a special type of profile, with spatial cor-

relation, complicated structures, and usually hav-
ing a moderate to large number of measurements.
Some recent methods in profile-monitoring litera-
ture take spatial correlations and complicated pro-
file structures into consideration, thus were likely
to be introduced for monitoring surface data. How-
ever, several aspects of these methods are deficient.
Jensen et al (2008), for example, proposed a profile-
monitoring scheme that is based on the linear mixed
model. Their scheme considers the autocorrelation
of the errors and the fluctuation of the parameters
in the profile. The correlation of the errors takes a
simple form, such as compound symmetry or auto-
regression. The compound symmetry form assumes
that, for any two observations within a profile, the
correlation coe�cient of their error terms is a fixed
value. This makes the compound symmetry form un-
suitable for common 2-D surface data because closer
observations should exhibit higher correlations. The
auto-regression form, on the other hand, is not eas-
ily applied in cases where the dimension of the ex-
planatory variable is higher than one. Although spa-
tial correlations are integrated in the model, varia-
tions in its patterns are not specifically monitored,
and the performance of the chart with respect to
variations in correlations has not been evaluated.
Colosimo (2008) used a spatial auto-regressive re-
gression (SARX) model to monitor the roundness
of the profile obtained by turning. Colosimo et al.
(2010) extended the method to monitor a cylindrical
surface. However, the SARX model requires a dis-
cretization of the measurement coordinates, to de-
fine the “neighborhood” of measurements, in order
for spatial correlations to be assigned. Grimshaw et
al. (2013) proposed a control chart to detect the
mean shift of spatial data. In their approach, the spa-
tial correlation structure of the data is modeled by
a variogram, based on which the covariance matrix
of all measurements across the profile is obtained.
The authors then constructed a Hotelling T 2 chart
to monitor the mean profile shifts, and their simu-
lation studies based on the monitoring of the bottle
wall shows that this method outperforms the ordi-
nary mean chart in various out-of-control cases. How-
ever, in some applications, we are not only interested
in detecting the shift in the mean profile, but also
interested in detecting the change of the surface pat-
terns like waviness and roughness. Much information
about surface patterns is contained in the correlation
structure of the data. Thus, increasing the perfor-
mance of the mean chart by introducing a correlation
structure of the data is not su�cient and the on-line
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monitoring of this correlation structure is also neces-
sary.

Other researchers have employed nonparamet-
ric methods to address spatial correlations. Qiu
et al. (2010), who used a nonparametric mixed-
e↵ect model and local linear kernel smoothing to
sketch the correlated profile, proposed a control
scheme for monitoring the discrepancy between the
smoothed sample profile and the estimated in-control
trend. Their simulation studies, which consider het-
eroscedasticity and spatial correlation within the
profile, demonstrated that the method is e�cient in
detecting common shifts in the profile’s trend. How-
ever, the variation in the strength of spatial correla-
tions (as an important feature of surface data) is not
directly monitored in their approach, and the expla-
nation of the out-of-control signal proves challenging.
Reis and Saraiva (2006) proposed a multiscale SPC
method for monitoring the surface profile of paper.
The quality of the paper is described by two metrics:
fine-scale roughness and large-scale waviness. The
variations in the two metrics are generated by dif-
ferent mechanisms. The researchers applied wavelet
transformation to decompose the profile into the two
metrics and proposed monitoring their coe�cients.
The fact that the profile can be decomposed into two
metrics makes the use of a 2-D surface map appro-
priate for monitoring the profile. Instead, Reis and
Saraiva (2006) studied a cross-sectional profile, which
is a 1-D data set and ignored the spatial informa-
tion contained in the surface. In the next section,
we introduce our control chart based on a Gaussian-
Kriging model. By characterizing the spatial corre-
lations within the surface using a correlation func-
tion, the Gaussian-Kriging model successfully cap-
tures the spatial correlation of the data. It also allows
for the flexibility of the measurement positions and
facilitates monitoring of the surface with several pa-
rameters that explicitly controls the surface’s spatial
patterns.

Model Building

Since its origination in the 1950s, the Gaussian-
Kriging model has been studied extensively in spa-
tial statistics (Cressie (1993)). Sacks et al. (1989) in-
troduced this model as an interpolation method to
the field of computer experiments, and Santner et al.
(2003) and Fang et al. (2006) systematically intro-
duced this area of research. This method is also im-
plemented in machine learning, where it is referred to
as Gaussian process model (Rasmussen and Williams

(2006)). Zhao et al. (2011) used a Gaussian-Kriging
model to illustrate the behavior of a wire-saw slicing
process in wafer preparation. However, this model
remains to be adopted in surface-profile monitoring.

In the Gaussian-Kriging model, the response vari-
able Yj , which is the thickness value measured at
position (x(1)

j , x(2)
j ) on the wafer, is decomposed into

three parts. First, the wafer exhibits an overall thick-
ness pattern; that is, its thickness increases roughly
linearly such that it is thin at one end and thick at
the other. This overall mean trend represents a vari-
ation in the macro-level thickness. Second, the wafer
is smooth and the thicknesses at adjacent sites are
correlated. This variation in micro-level thickness ac-
counts for the waviness of the wafer. Last, measure-
ment errors and other incidental errors may a↵ect
the thickness at each site independently and cause
roughness in the profile. Therefore, we propose the
following equation to characterize the measurements
of thickness values on a sample wafer surface:

Yj = µ + �1x
(1)
j + �2x

(2)
j + Z(xj) + "j , (1)

where xj = (x(1)
j , x(2)

j ) are the 2-D explanatory vari-
able, representing the coordinates of the jth mea-
surement point on the surface as introduced be-
fore, and Yj is the corresponding response variable,
the thickness measurement at this position. This
model contains three components: the linear trend,
the Gaussian field component, and the noise term.
The linear trend characterizes the macro-scale varia-
tion, the Gaussian field component characterizes the
micro-level spatial correlation, and the noise term
represents random noise. Therefore, this model cap-
tures both the large-scale and the fine-scale varia-
tions in the wafer surface successfully. Process moni-
toring based on this model is expected to provide not
only improved charting performance but also help-
ful diagnostic information. We explain this model in
greater detail now.

The linear trend of the Gaussian-Kriging model
is similar to the linear trend of a multiple regression
model. The linear trend of a single wafer indicates
that the expected thickness profile of the wafer is a
planar surface. The linear trend captures the macro-
level thickness pattern. In practice, this thickness
pattern is produced by the lapping mechanism (see
Lin and Wang (2011) for a schematic illustration of
the lapping process). When wafers are mounted onto
a lapping machine, the upper and lower plates of the
machine rotate in opposite directions, removing the
unwanted surface materials. Because the upper plate
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may be tilted away from the vertical axis, more ma-
terial is removed from some parts of the wafer than
from other parts such that the thickness of the wafer
exhibits a roughly linear trend from one end to the
other.

The second term in the model Z(x) depicts the
spatial correlation within the surface. It is assumed
to be a stationary process that satisfies the following
conditions:

1. E(Z(x)) = 0,

2. Cov(Z(x1), Z(x2)) = C(x1 � x2), where C(·)
is a positive-definite function,

3. For any x1,x2, . . . ,xn, (Z(x1), Z(x2), . . . ,
Z(xn)) follow a multivariate normal distribu-
tion.

These conditions intuitively indicate that the
properties do not change across the surface and that
the covariance of two measurements is only depen-
dent on their relative positions. From condition 2,
for any x,

Var(Z(x)) = C(0).

If we denote �2
Z by C(0), we obtain Cov(Z(x1),

Z(x2)) = �2
Zr(x1 � x2), where r(·) is the corre-

lation function of the stationary Gaussian process
and r(x1 � x2) depicts the correlation among re-
sponse variables measured at locations with distances
of x1 � x2 apart. The variogram of the correlation
function r(·) is defined as

2�(h) = Var(Z(x+h)�Z(x)) = �2
Z(2�2r(h)), (2)

which can be estimated using an empirical variogram
introduced by Cressie (1993) and defined as

2�̂(h) =
1

|N(h)|
X
N(h)

(Z(si)� Z(sj))2, h 2 R2,

(3)
where N(h) = {(si, sj) | si � sj = h}. The shape
of 1 � r(h) may be roughly sketched by this for-
mula. Cressie (1993) advocates selecting r(·) from
a parametric family to ensure that the covariance
function is positive-definite. In many cases, one or
more parameters in the covariance model represent
the strength of a spatial correlation within the pro-
file. Some families of the univariate correlation func-
tion, such as the cubic, exponential, and Gaussian,
can be found in the work of Koeler and Owen (1996).
For the 2-D surface, the product correlation function

r(h; ✓1, ✓2) = r✓1(|h(1)|)r✓2(|h(2)|)

is often used for mathematical convenience. In this
expression, r✓(·) denotes a univariate correlation
function.

Zhao et al. (2011) employed the following Gaus-
sian correlation function to model the surface of the
wafer:

r✓(d) = exp
⇢
� d2

2✓2

�
.

Thus,

r (x1 � x2; ✓1, ✓2)

= exp

(
�(x(1)

1 � x(1)
2 )2

2✓2
1

� (x(2)
1 � x(2)

2 )2

2✓2
2

)
.

(4)

The Gaussian correlation function can provide
a smooth fit of the spatial data and therefore is
adopted in this study. In the simulation study sec-
tion, we will demonstrate why the Gaussian corre-
lation function is suitable for the variogram of the
thickness profile through crude analysis. However,
more delicate methods for selecting correlation func-
tions can be developed in an expanded Phase I study.
Our method can be easily extended to other types of
correlation functions.

We now introduce some important properties of
the Gaussian correlation function, many of which
also apply to other correlation families. First, the cor-
relation among the response variables is positive; it
decreases as the distance between the response vari-
ables increases. This property is consistent with our
intuition. In addition, ✓1 and ✓2 determine the in-
tensity of the spatial correlation in the x(1) and x(2)

direction. The value of the correlation function r✓(d)
with smaller ✓ will decrease more rapidly when d in-
creases, as shown in Figure 3. Reflecting in the real-
ization of resulted random field, larger ✓i may gener-
ate Z(x) with more fluctuations in the direction of

FIGURE 3. The Gaussian Correlation Function r✓(x) with
Di↵erent ✓’s.
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FIGURE 4. The Contours of Four Profiles of a Simu-
lated Gaussian Process Z(x) with Di↵erent ✓1’s and ✓2’s.
�1

Z = 10.

x(i), i = 1, 2 according to experiments, as is shown
in Figure 4, which displays the contours of four sim-
ulated Z(x)’s with the same �2

Z value (�2
Z = 10) but

di↵erent ✓1 and ✓2 values. With smaller ✓1 and ✓2

values, the generated surface tends to be wavier in
the corresponding directions.

Furthermore, �2
Z may a↵ect the amplitude of the

fluctuations. For clear demonstration, we show the
e↵ect of �2

Z with a 1-D x. The observations drawn
from this study still hold for the above 2-D processes.
Figure 5 shows the e↵ect of �2

Z on the shapes of four
simulated Z(x)’s. The parameter ✓ for all four pro-
cesses is 0.5, and �2

Z changes from 0.5, 1, 2, to 10. If
the correlation is strong (✓ is large), �2

Z may lead to
a deviation of the entire profile from its mean value,
as illustrated in Figure 6, in which the shapes of sim-
ulated Z(x) with 1-D x and �2

Z = 1, ✓ = 0.02, 0.2, 1,
and 2 are presented. ✓1, ✓2, and �2

Z determine the
pattern of random waviness of the Gaussian term
when fitting the model to the wafer data. Therefore,
alarms are expected to go o↵ when conditions that
a↵ect wafer waviness occur.

When there is strong evidence that the correlation
within the profile is isotropic, we can assume ✓1 =
✓2 = ✓ in the model. However, when monitoring the
wafer surfaces, we may rotate the coordinates of the
wafer such that the direction of the x1 axis is parallel
to the slicing direction, and the x2 axis is orthogonal

FIGURE 5. The Shape of Ten Simulated One-
Dimensional Profiles of a Gaussian Process with ✓ = 0.5
but Di↵erent �1

Z’s.

to it. In this manner, assigning independent values
for ✓1 and ✓2 has explicit meaning. Hereafter, our
method assumes ✓1 and ✓2 are distinct parameters in
this study.

FIGURE 6.The Shape of Ten Simulated One-Dimensional
Profiles of a Gaussian Process with �1

Z = 1 but Di↵erent ✓’s.
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FIGURE 7. The Contours of One-Dimensional Profiles
Z(x) + " Simulated from Gaussian-Kriging Model, with Dif-
ferent �2

"’s.

The third term "j represents the random error
caused by inaccurate measurements and other un-
intentional events. We assume that "j ’s are indepen-
dent and identically distributed (i.i.d.) random vari-
ables and follow the N(0,�2

") distribution, and that
each "j may a↵ect the “roughness” of the measured
surface. Figure 7 shows three simulated discrete 1-D
profiles of Z(x) + " with no linear trend, the same ✓
and �2

Z values but di↵erent �2
" values. It is evident

that a larger �2
" leads to rougher surfaces.

The linear trend, the Gaussian field Z(x), and the
random error " in the Gaussian-Kriging model rep-
resent the characteristics of the surface in di↵erent
scope: the linear part models the major trend of the
wafer, the Gaussian field models the waviness, and
the noise part represents the roughness of the mea-
sured surface. There exists a total of seven parame-
ters in this model (µ,�1,�2;�2

" ,�2
Z , ✓1, ✓2) and each

one has a corresponding engineering implication.

Process Monitoring Based on
the Gaussian-Kriging Model

In this section, we propose a control chart that
is based on the monitoring of the parameter vectors
proposed in the last section to ensure the stability
of the wafer’s mean thickness, inclination, pattern
of waviness, and degree of roughness. The in-control

values of these seven parameters are assumed to be
known from a Phase I study of historical data. We
monitor the stability of these parameters by com-
paring their estimations from the thickness measure-
ments of each on-line wafer with their in-control val-
ues.

We denote the parameter vector by ⇠ = (µ,�1,�2;
�2

" ,�2
Z , ✓1, ✓2)0 and assume that each surface profile

has m measurements with explanatory variables (po-
sitions) as follows:

x1 = (x(1)
1 , x(2)

1 ), · · · ,xm = (x(1)
m , x(2)

m ).

The corresponding response variables (thickness)
are (Y1, . . . , Ym)0. When a Gaussian-Kriging model is
used in geostatistics or computer experiments, pre-
diction of Y (x) at a given point is the objective.
While in SPC, we are interested in hypothesis test-
ing for the parameter vector ⇠, which determines the
surface characteristics as mentioned in last section.
Due to this di↵erence in objectives, there is no well-
known hypothesis-testing method for the parameter
vector H0 : ⇠ = ⇠0 in the Gaussian-Kriging model in
computer experiments or geostatistics literature. We
propose to use a control scheme based on the Wald
test and multivariate control charts, to detect shifts
in the parameters in the Gaussian-Kriging model. We
obtain an estimator of the parametric vector and its
corresponding covariance and construct a T 2 type
statistic to monitor the shift in the parametric vec-
tor with the maximum-likelihood estimation of the
vector and its asymptotic covariance.

Step 1: Obtain the Maximum-Likelihood Estimator

(MLE) from Each Surface Sample

First, we derive the joint probability distribution
of observations within a surface sample. Let

y = (Y1, . . . , Ym)0,
z = (Z(x1), . . . , Z(xm))0

be the response variables and their corresponding
Gaussian field terms. Based on the Gaussian field
described in the previous section, we obtain

Cov(Z(xj1), Z(xj2)) = �2
Zr(xj1 � xj2 ; ✓1, ✓2),

where r(·; ✓1, ✓2) is calculated from Equation (4). De-
fine R(✓1, ✓2) as the matrix of which the (j1, j2)th
element is r(xj1 �xj2 ; ✓1, ✓2). The covariance matrix
of the Gaussian field is given by

Cov(z) = �2
Z · R(✓1, ✓2).
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Furthermore,

Cov(z + ") = Cov(z,z) + Cov(", ")
= �2

Z · R(✓1, ✓2) + �2
"Im⇥m.

Thus,

Cov(y,y) = �2
Z · R(✓1, ✓2) + �2

"Im⇥m.

Cov(y,y) is determined by �2
" , �2

Z , ✓1, and ✓2. In ad-
dition, the expectation of each element of y satisfies

E(Yi) = µ + �1 x(1)
i + �2 x(2)

i ,

which is dominated by µ, �1, and �2.

This representation of the mean and covariance of
y motivates us to split the seven parameters into two
groups, corresponding to the mean and covariance of
the profile, as follows:

⇠ = (⇠1, ⇠2)0,

where
⇠1 = (µ,�1,�2)0,

and
⇠2 = (�2

" ,�2
Z , ✓1, ✓2)0.

Let

B =

0
B@

1 x(1)
1 x(2)

1
...

...
...

1 x(1)
m x(2)

m

1
CA ,

⌃(⇠2) = �2
Z · R(✓1, ✓2) + �2

"Im⇥m,

thus,
y ⇠ N(B⇠1,⌃(⇠2)). (5)

By obtaining the value of ⇠1 and ⇠2 that maxi-
mizes the log-likelihood function of this distribution,
we can determine the MLE of ⇠. Fang et al. (2006)
developed a general algorithm for calculating ⇠̂. We
extend it for our use (see details in the Appendix).

Step 2: Calculate the Covariance of the Estimators

In previous studies, such as those of Colosimo
(2008), Williams et al. (2007), and Jensen et al.
(2008), the covariance of the estimator is often ob-
tained from a data-driven method; the variance of
the estimated parameters from the historical profiles
is treated as the variance of the estimators. There-
fore, this estimation is highly dependent on available
historical data. In this study, we consider using the
theoretical value of the MLE’s covariance. Mardia
and Marshall (1984) proved that, when the number
of data points and the domain of the design points

tends to infinity, the MLE for the Gaussian process
exhibits a weak consistency and ⇠̂ asymptotically fol-
lows a multivariate normal distribution with the in-
verse of the Fisher information matrix as the covari-
ance, that is,

⇠̂
d! N(⇠, I�1(⇠)).

The Fisher information matrix is defined in the
Appendix. According to Mardia and Marshall (1984),
I(⇠) is block-diagonal,

I(⇠) = diag(I1(⇠), I2(⇠)), (6)

and has the representation of

I1(⇠) = B0⌃�1(⇠2)B, (7)

[I2(⇠)]i,j =
1
2
tr

 
⌃�1 @⌃

@⇠(i)
2

⌃�1 @⌃

@⇠(j)
2

!
, (8)

i, j = 1, . . . , 4.

Here ⇠(i)
2 denotes the ith component of ⇠2.

Step 3: Construct T 2 Statistics to Monitor the

Sampled Surface

Let ⇠IC = (⇠1,IC, ⇠2,IC) be the in-control (IC) pa-
rameter vector obtained from Phase I and let ⇠ =
(⇠1, ⇠2) be the real parameter from which the sur-
face sample is generated. By considering the hypoth-
esis testing problem H0 : ⇠ = ⇠IC, a multivariate T 2

control chart is designed,

T 2 = (⇠̂ � ⇠IC)0I(⇠IC)(⇠̂ � ⇠IC)
= (⇠̂1 � ⇠1,IC, ⇠̂2 � ⇠2,IC)0diag(I1(⇠1), I2(⇠2))

· (⇠̂1 � ⇠1,IC, ⇠̂2 � ⇠2,IC)

= (⇠̂1 � ⇠1,IC)0I(⇠1,IC)(⇠̂1 � ⇠1,IC)

+ (⇠̂2 � ⇠2,IC)0I(⇠2,IC)(⇠̂2 � ⇠2,IC)
= T 2

1 + T 2
2 ,

where

T 2
1 = (⇠̂1 � ⇠1,IC)0I(⇠1,IC)(⇠̂1 � ⇠1,IC),

T 2
2 = (⇠̂2 � ⇠2,IC)0I(⇠2,IC)(⇠̂2 � ⇠2,IC).

According to the asymptotic property of ⇠̂, when the
process is in control and the number of measurements
is su�ciently large, this T 2 approximately follows the
�2(7) distribution. Thus, we can calculate and mon-
itor the T 2 statistic for each surface sample: if T 2 is
larger than a specified control limit, the control chart
signals an alarm. We name this chart the individual
surface chart (ISC) because it monitors a single T 2

statistic.
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In addition to monitoring T 2, there is another pos-
sible monitoring scheme. Because the Fisher informa-
tion matrix for ⇠ is a block-diagonal matrix (see Ap-
pendix) and ⇠̂ asymptotically follows a normal distri-
bution, the MLEs of the two groups of parameters (⇠̂1

and ⇠̂2) are approximately independent if a su�cient
number of measurements exists. This notion suggests
that T 2

1 and T 2
2 are approximately independent and

are asymptotically distributed as �2(3) and �2(4),
respectively. Therefore, we can construct two inde-
pendent control charts to monitor T 2

1 and T 2
2 . Given

the specific control limits UCL1 and UCL2, if the
surface sample achieves T 2

1 > UCL1 or T 2
2 > UCL2,

the process signals an alarm. We name this chart the
separate surface chart (SSC). The performance of the
ISC and the SSC will be compared in a subsequent
section.

Note that the proposed T 2 chart can be easily
improved by incorporating the multivariate EWMA
procedure; such an improvement should make the
chart more e↵ective in detecting small shifts in the
parameters. Although similar approaches have been
thoroughly discussed in the literature, we do not in-
clude this enhancement in the following simulation
studies.

Diagnostic information is usually desired when a
multivariate chart signals an alarm. Due to the cor-
relations among the parameter estimates, we may
not be able to attribute the alarm to a single vari-
able. However, the traditional diagnostic methods
proposed for the general T 2 chart, such as the meth-
ods proposed by Mason et al. (1995), can also be
used with the proposed chart. In addition, the sep-
arate monitoring scheme that was illustrated previ-
ously can provide clues regarding the set of variables
that shift, because T 2

1 consists of parameters that
correspond to macro-thickness patterns, whereas
T 2

2 only consists of micro-level roughness param-
eters.

Simulation Studies

This study is motivated by real data collected
from a semiconductor manufacturing process. By
constructing a model for surface characterization and
monitoring, we have explicitly employed some as-
sumptions about the data. In this section, we ver-
ify the assumptions using real data and simula-
tion methods and then compare the performance of
the proposed chart with that of a modified profile
chart.

Verification of the Correlation Functions

The previous deviation is dependent on the as-
sumption of spatial correlation within the wafer sam-
ple. In this section, we use the variogram introduced
previously to show the existence of spatial correla-
tion within the profile of the wafer’s thickness and
verify the validity of the Gaussian correlation func-
tion. There are 3912 measurement points on a wafer’s
surface. To fully utilize the data and for ease of expo-
sition, we sketched the isotropic variogram instead of
the directed variogram of Equation (3). Other modi-
fications are needed to solve the problem that it can-
not guarantee that �(h) is well defined for a series of
equally spaced h, because the position of measure-
ments on each wafer is not lattice and the values of
h which makes |N(h)| 6= 0 may be irregular. On each
wafer, the distance between two measurement varies
between 0 (approximately the nearest distance be-
tween two measurements) and 2 (approximately the
largest distance between two measurements on wafer
with radius 1). We divide [0, 2] into n equal intervals
Nk = (k�, (k+1)�), � = 2/n, and k = 0, . . . , n�1, and
calculate the mean of (Z(si)�Z(sj))2, |si�sj | 2 Nk

to sketch the isotropic empirical variogram at k�. We
selected n = 50 because 50 intervals is big enough
to let a trend in �(h) be observed and not so small
to ensure the accuracy of each estimated �(h), with
adequate pairs of (si, sj) fall in each interval. The
isotropic empirical variogram we used is

2�̃(k�) =
1

|Nk|
X

|si�sj |2Nk

(Z(si)� Z(sj))2,

with � = 2/50 = 0.04 and 1  k  50. Figure 8
sketches its trend.

Fang et al. (2006) introduced some commonly
used univariate correlation functions, such as the
family of linear correlation functions with

r(x; ✓) = max
n
1� x

✓l
, 0
o

,

where l is the range of x, and the family of exponen-
tial correlation functions with

r(x; ✓) = exp
n
�x

✓

o
.

There is also the family of cubic correlation functions
introduced by Koeler and Owen (1996), with

r(x; �) = 1� 3(1� ⇢)
2 + �

x2 +
(1� ⇢)(1� �)

2 + �
x3,

where ⇢ = Corr(Y (0), Y (1)) is the correlation be-
tween observations with a unit distance and � =
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FIGURE 8. The Empirical Variogram Obtained from the
Measurements on a Sample Wafer.

Corr(Y 0(0), Y 0(1)) is the correlation between two ob-
servations of the derivative process with a unit dis-
tance. The family of Gaussian correlation functions
has the representation of

r(x; ✓) = exp
⇢
� x2

2✓2

�
.

According to the relationship between variogram and
correlation function in Equation (2), these correla-
tion function’s corresponding variograms are graph-
ically shown in Figure 9.

FIGURE 9. The Corresponding Variogram of Several
Common Univariate Correlation Functions: Linear, Expo-
nential, Cubic, and Gaussian.

FIGURE 10. The Positions of the 86 Resampled Data
Points on Each Wafer.

The ascending trend of the empirical variogram
suggests that spatial correlation can be reasonably
assumed. By comparing the shape of the empirical
variogram and the shapes of the model variograms
corresponding to various families of correlation func-
tions, we find that Gaussian correlation functions in
Figure 9 and the empirical variogram in Figure 8
have similar convexity property, and so we select a
Gaussian correlation function to construct the model
in this study.

Simulation Settings for the Verification of
Asymptotic Distributions and Performance
Comparison

We introduce our simulation settings prior to con-
ducting simulation studies that examine the perfor-
mance of the proposed scheme.

In the Gaussian-Kriging model, the computational
speed of the iterative algorithm for calculating MLEs
is assumed to be slow when m, the number of data
points within one surface sample, is large. That is
because the inversion of an m ⇥m-order covariance
matrix is required in each step of the iteration. It is
practically impossible to employ all 3912 data points
to estimate the MLE. For this reason, we resample
the 3912 data points to obtain 86 lattice points prior
to constructing the Gaussian-Kriging model. In prac-
tice, which data reduction technique to use depends
on the application, and special consideration should
be taken to preserve as much information as possi-
ble. In this study, we select 86 data points to preserve
the predominant thickness information of the wafer
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and to computationally manipulate the problem. The
uniform sampling scheme is adopted so that these 86
positions are arranged on a lattice (see Figure 10).
There are no data points in the center area due to
measurement constraints. Jin et al. (2012) can be re-
ferred to as a sequential sampling strategy based on
Gaussian-Kriging model, by which the number and
positions of measurement points can be determined.

Based on a conforming real wafer, the maximum-
likelihood algorithm yields the following estimates:

µ = 545.91,
�1 = 0.167,
�2 = �0.0316;
�2

" = 0.0000618,
�2

Z = 0.0120,
✓1 = 0.276, ✓2 = 0.464. (9)

In what follows, we treat this parameter vector as
the in-control value for the performance study, with
the exception of ✓1 and ✓2, which will be assigned
with arbitrary values that represent either strong or
weak spatial correlations. In practice, however, in-
control parameter estimation should be studied more
rigorously in Phase I.

According to Ranjan et al. (2011), when any pair
of measurements are close in position, the covariance
matrix may become either singular or not positive
definite. We also found numerical problems may also
occur when the spatial correlation within the profile
becomes too weak: intuitively, when ✓1 and ✓2 are too
small, the Z(xi) terms of di↵erent observations will
be nearly independent of each other, and they may
not be distinguishable from "i. This indicates that
the proposed Gaussian-Kriging model is not suitable
for monitoring surfaces with weak spatial correlation.
Some researchers (e.g., Fang et al. (2006)) have ad-
vocated the use of a penalized-likelihood approach
to obtain a stable estimation. To avoid the appear-
ance of a singular matrix in parameter estimation,
Ankenman et al. (2010) suggested estimating the
variance of " first when using the Gaussian-Kriging
model with " terms, and then estimating other pa-
rameters assuming �2

" is known. In this study, it is
possible to first estimate �2

" = limh!0 �̂(h) because
limh!0 r(h) = 0 and

�(h) =
1
2
Var(Z(x + h)� Z(x))

= �2
e + �2

z(1� Corr(Z(x), Z(x + h)))
= �2

e + �2
z(1� r(h)).

Then the estimation of other parameters can be
obtained in a maximum-likelihood method. Ranjan
et al. (2011) proposed a lower bound of �2

"/�2
z to

deal with singularity problems and recommended
that a small reduction from pk = 2 in r(x; ✓) =
exp(�xpk/✓2) to pk = 1.99 or 1.95 may decrease
the occurrence of near-singular cases. However, the
methods mentioned above may not yield a simple
representation of the covariances of the parameter
vector. Therefore, we do not include these special
measures in this study, but maintain the original
control scheme instead, and limit the application of
our control scheme to situations in which the spa-
tial correlation is not excessively weak. To further
lower the probability of nonconvergence, we adopt
the following measures: a) restrict the value of the
parameters to a reasonable region (�2

Z and �2
" must

be positive and ✓1 and ✓2 should not be too small);
b) check the value of the likelihood function. If the
likelihood function decreases, shorten the length of
the step in searching for the MLE. And c) if the
MLE value switches among several values and the
algorithm fails to stop after 25 steps, we employ the
average of the last five values as the estimator. Our
simulation study confirms that the chance of non-
convergency can be disregarded with these ad-hoc
measures.

Verification of the Asymptotic Distributions
of the MLEs and T 2 Statistics

In the proposed chart, we assumed that the do-
main and number of measurements are big enough
so that the MLEs of the parameters are approxi-
mately normally distributed. To verify this assump-
tion, we computed 500 parameter estimates from 500
computer-generated surfaces (using Equation (5))
with parameters in Equation (9). The matrix plot
of these estimates is shown in Figure 11, which il-
lustrates that the joint distribution of each pair of
components is approximately elliptical and indicates
that the pair approximately follows a 2-D normal
distribution.

Using the representation of the Fisher information
matrix in Equations (6), (7), and (8), we can cal-
culate the theoretical asymptotic covariance of the
MLE, i.e., the inverse of the Fisher information ma-
trix. Subsequently, the T 2, T 2

1 , T 2
2 statistics are ob-

tained. The empirical cumulative distribution func-
tions (c.d.f.) of T 2

1 and T 2
2 , which are shown in Fig-

ure 12, are compared with the cumulative distribu-
tion function of �2(3) distribution and �2(4) distri-
butions, respectively. The empirical c.d.f.’s are quite
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FIGURE 11. The Scatter Plots of 500 MLEs of Parameters in ⇠1 and ⇠2. Each pair of components presents an elliptical-
shaped distribution.

similar to the theoretical c.d.f.’s, suggesting that the
assumption of an asymptotic distribution is valid.

The Comparison of Performance

In this section, we compare the performance of our
proposed ISC and SSC with the traditional multiple
regression chart. In SPC, the performance of con-
trol charts is usually evaluated by comparing their
average run length (ARL), which is defined as the
average number of steps needed for the charts to sig-

nal. The control limits of all competing charts are
adjusted so that each chart has the same ARL value,
ARLin, when the process is in control. When unex-
pected process changes occur and the process goes
out of control, the ARL of the control charts in such
cases, ARLout, should be shorter than ARLin, and
the chart having the shortest ARLout is regarded as
the one with the best charting performance.

Next we introduce the multiple regression chart,
which is used as a benchmark in this simulation

FIGURE 12. The Empirical c.d.f. of T 2
1 and T 2

2 Statistics (Indicated by Solid Curves) and the c.d.f. of �2(3) and �2(4)
Distributions (Indicated by Dotted Curves). The dotted curve is hard to see in the first figure because the empirical c.d.f. of
T 2

1 is very close to that of �2(3).
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study. In the multiple regression model, the relation-
ship between the response variable Yj and the ex-
planatory variables x(1)

j and x(2)
j is given by the fol-

lowing equation:

Yj = µ + �1x
(1)
j + �2x

(2)
j + "j . (10)

In the model, the variation of the profile is simply
represented by identically distributed normal ran-
dom variables "j with mean 0 and variance �2. The
spatial correlation within the data is disregarded.
Zou et al. (2007) proposed a MEWMA chart to mon-
itor the linear parameters (⇠1 = (µ,�1,�2)) and the
variance of the noise terms (�2) of a multiple lin-
ear profile model. This chart is modified a little to
achieve a fair comparison with our proposed surface
charts, ISC and SSC. The details are shown as follow.

First, Zou et al. (2007) transformed all estimated
parameters of interest into a multivariate normally
distributed random vector and then employed a
MEWMA chart to monitor the vector. Because the
MEWMA chart is more e↵ective for small shifts, we
only apply Shewhart-type or multivariate T 2 charts
for a reasonable comparison. If small shifts are of in-
terest, the scheme proposed in this study can be eas-
ily combined with an EWMA procedure to improve
the performance, and then reasonably compared with
the original MEWMA scheme of Zou et al. (2007).

In Zou et al. (2007), a �2 distributed statistic
Z̃j(�) = (n�p)�̂2

j /�2 is proposed for monitoring the
variance of the noise term, (�2) and a multivariate-
normally distributed statistic Z̃j(⇠) = (⇠̂j � ⇠)/� is
proposed for monitoring the linear coe�cients). In
order to incorporate them in one chart, Zou et al.
(2007) transformed Z̃j(�) to a standard normal ran-
dom variable Z̃⇤j (�) and combined Z̃⇤j (�) and Z̃j(⇠)
in one multivariate-normal distributed vector. How-
ever, when spatial correlation exists, Z̃j(�) is no
longer �2 distributed, and, if we transform Z̃j(�)
to Z̃⇤j (�) using the same technique, the distribu-
tion of the resulting Z̃⇤j (�) will deviate dramatically
from N(0, 1), and the performance of the charts will
be critically a↵ected. Therefore, for comparison pur-
poses, we employ two control charts instead to mon-
itoring Z̃j(⇠) and Z̃j(�) separately, which we named
the ⇠ chart and the � chart. For the ⇠ chart, we select
UCL⇠, and when Z̃j(⇠)0(X 0X)Z̃j(⇠) > UCL⇠, the ⇠
chart signals an alarm. For the � chart, we select
UCL� and LCL�, such that when Z̃j(�) is greater
than UCL� or smaller than LCL�, the � chart sig-
nals an alarm. Assuming that the monitoring of ⇠ and

�2 has similar importance, we select these control
limits so that the ⇠ chart and � chart have equiva-
lent in-control ARL, thus equivalent in-control alarm
probability as follows:

P (Z̃j(�) > UCL� or Z̃j(�) < LCL�)
= P (Z̃j(⇠)0(X 0X)Z̃j(⇠) > UCL⇠).

Assuming the � chart can detect an increase and a
decrease in � with similar e�ciencies, let

P (Z̃j(�) > UCL�) = P (Z̃j(�) < LCL�).

The ⇠ chart and � chart are used collectively and
the control limits are selected to obtain a prede-
termined joint in-control ARL. Because we do not
employ nominal control limits (the quantile of the
�2 distribution) from the theoretical distributions,
it is obvious that, once the in-control ARL is se-
lected, the performance of these charts is not de-
pendent on the selection of the model’s in-control
parameter �; we may substitute Z̃j(⇠)0(X 0X)Z̃j(⇠)
with (⇠̂j � ⇠)0(X 0X)(⇠̂j � ⇠) in the ⇠ chart and sub-
stitute Z̃(�) with �̂2 in the � chart.

In conclusion, to provide a reasonable comparison
with our ISC and SSC, the chart for monitoring lin-
ear profiles is modified and implemented as follows:
(a) Similar to the Gaussian- Kriging model, adopt
the in-control value of ⇠ = (µ,�1,�2)0. (b) For each
sample profile, calculate the least-square estimator of
⇠, which is denoted by ⇠̂, and the unbiased estima-
tor of �2, which is denoted by �̂2. (c) Calculate the
charting statistics, Z(⇠) = (⇠̂�⇠)0(x0x)�1(⇠̂�⇠) and
Z(�) = �̂2. (d) If Z(⇠) > UCL⇠, Z(�) > UCL� or
Z(�) < LCL�, the process signals an alarm. UCL⇠,
UCL� and LCL� are chosen such that

P (Z(�) > UCL�) = P (Z(�) < LCL�)

and

P (Z(�) > UCL� or Z(�) < LCL�)
= P (Z(⇠) > UCL⇠).

Because this method was originally proposed for lin-
ear profile monitoring, we hereafter name this chart
the LPC.

Next we compare the LPC with the ISC and SSC
proposed in this work. In our simulation studies,
all random surface samples are generated from the
Gaussian-Kriging model. The in-control parameters
of the model, except for ✓1 and ✓2, are set to be the
same as the estimates given in Equation (9). A pre-
liminary study of historical wafer samples shows that
✓1 and ✓2 usually fall within 0.22 and 0.61. Therefore,
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in the following, we study the performance of the con-
trol charts under ✓1 = ✓2 = 0.4 and ✓1 = ✓2 = 0.6,
which represent medium and strong spatial correla-
tions of the wafer measurements. Surfaces with even
weaker spatial correlations (generated by ✓1 or ✓2

values less than 0.2) were not examined because the
Gaussian-Kriging model may not be capable of han-
dling surfaces with very weak spatial correlations
properly. In summary, the in-control parameters for
our two groups of simulation study are

µ = 545.91;
�1 = 0.167;
�2 = �0.0316;
�2

" = 0.0000618;
�2

Z = 0.0120;
✓1 = 0.400;
✓2 = 0.400,

and
µ = 545.91;

�1 = 0.167;
�2 = �0.0316;
�2

" = 0.0000618;
�2

Z = 0.0120;
✓1 = 0.600;
✓2 = 0.600.

We consider the out-of-control conditions where
each parameter is shifted by 1sd and 2sd, where sd
denotes the standard deviation of each parameter’s
MLE. The MLEs are derived from the diagonal ele-
ments of the inverse of the Fisher information matrix.
Because the engineering implications of �1,�2 and
✓1, ✓2 are equivalent, we modify �1 and ✓1 but main-
tain the original �2 and ✓2. In addition, the shifts
in µ or �1 of the same magnitude but in di↵erent
directions should yield the same ARL performance,
because the variance of µ̂ and �̂1 is not related to
their real values. Thus, we do not include the cases
in which µ or �1 has a negative shift. A total of 16
out-of-control combinations and their corresponding
in-control ARLs are provided in Table 1. Each ARL
is calculated from 5000 replicates. The findings from
this ARL comparison study are summarized below.

First, one parameter in linear coe�cients ⇠1 shifts.
When µ increases, the ISC outperforms the LPC.
The SSC outperforms the ISC in both cases, when
✓1 = ✓2 = 0.4 and when ✓1 = ✓2 = 0.6. When �1

increases, the ISC becomes the worst chart, whereas
the SSC remains the best chart.

Second, for the shifts in ⇠2, we studied the cases in
which the parameters shifted either upward or down-
ward. Unlike situations in which the parameter in ⇠1

shifts, the ISC is more sensitive than the SSC in most

TABLE 1. The ARLs with Zero or One-Parameter Shift

✓IC = (0.4, 0.4) ✓IC = (0.6, 0.6)

Shift ISC SSC LPC ISC SSC LPC

IC 201.26 208.36 202.27 201.45 199.83 197.93
µ +1 sd. 150.92 76.03 192.07 175.72 77.81 189.85

+2 sd. 52.95 12.96 160.19 107.31 13.60 157.67
�1 +1 sd. 150.11 74.84 98.53 178.50 76.69 113.99

+2 sd. 52.96 12.66 24.09 108.01 13.45 34.33
�2

" �2 sd. 218.06 263.82 195.63 232.89 278.09 192.05
�1 sd. 262.16 245.33 205.05 235.20 238.22 191.58
+1 sd. 65.54 95.77 205.58 118.07 154.75 202.77
+2 sd. 15.59 24.13 204.25 35.49 73.23 206.01

�2
Z �2 sd. 12.52 14.73 4.09 10.73 14.40 1.74

�1 sd. 67.44 97.01 71.38 66.75 108.73 58.01
+1 sd. 52.40 47.29 41.89 76.53 45.98 34.06
+2 sd. 8.93 11.13 13.03 15.13 13.30 10.77

✓1 �2 sd. 46.04 98.23 336.42 92.71 111.75 214.21
�1 sd. 185.20 233.82 257.47 268.55 257.38 217.82
+1 sd. 57.98 78.43 156.05 69.97 99.25 160.98
+2 sd. 13.00 19.68 124.09 20.01 33.79 122.07
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TABLE 2. The ARLs with �2
Z Shift and Five Profiles in Each Subgroup

✓IC = (0.4, 0.4) ✓IC = (0.6, 0.6)

Shift ISC SSC LPC ISC SSC LPC

IC 196.27 203.22 201.15 211.81 199.51 196.42
�2

Z �2 sd. 1.00 1.00 1.01 1.00 1.00 1.00
�1 sd. 4.15 3.66 6.38 4.75 4.42 6.54
+1 sd. 3.31 3.68 13.31 3.51 4.36 15.40
+2 sd. 1.07 1.07 2.63 1.10 1.14 3.53

cases when the parameter in ⇠2 shifts. Specific find-
ings are summarized as follows:

• Shifts in �2
" . The ARLs of the ISC and SSC

change as �2
" shifts. In particular, the ARLs

of the ISC or SSC decrease when �2
" increases.

However, when �2
" decreases, the ARLs increase

monotonically for the SSC; it first increases
and then decreases for the ISC. Calculation of
the Fisher information matrix indicates that,
when �2

" decreases, the variance of its estimator
Var(�̂2

") also decreases. When small downward
shifts occur, the e↵ect of the parameter’s vari-
ance decreases (which extends the ARL) and is
more significant than the e↵ect of the param-
eter’s mean shift (which shortens the ARL).
Thus, the overall result is that the ARL in-
creases.

Regarding the performance of the LPC, we
observed that, when �2

" shifts, the ARL only
slightly changes. This can be explained as fol-
lows. �2

" is very small compared with �2
Z , and

the e↵ect of the term " may be seen as being
similar to that of adding a small random error
to each measurement. In the LPC, the waviness
of the surface contributes to most of the sum
of square errors, thus, the chart monitoring the
variance cannot detect a shift in �2

" . The "i val-
ues are too small to be able to influence modify
the regression trend, thus the chart monitor-
ing the linear terms cannot detect shifts in �2

" .
In practice, we are more interested in detecting
increases in �2

" . Unlike the LPC, our proposed
ISC and SSC can e�ciently detect increases in
�2

" .

• Shifts in �2
Z . The ISC, SSC, and LPC can

all detect shifts in �2
Z . However, our proposed

spatial charts are not as e�cient as the con-
ventional LPC in many cases, especially when

✓IC = (0.6, 0.6). We found that, when the pro-
file exhibits strong spatial correlations and the
area of (x(1), x(2)) is bounded, an increment in
�2

Z may lead to a random shift of the entire
profile (recall Figure 6). In this case, the ac-
curacy of the estimates of µ and �2

Z will be
a↵ected, because the shift in µ and increase
in �2

Z may either generate this random shift.
However, if each time we sample more than
one surface as a subgroup, this situation can
be improved a lot. In such cases, the shift in
µ, which results in a synchronic shift of all sur-
faces across the subgroup, can be distinguished
from the enlargement of �2

Z , which causes the
trends of the surfaces within the subgroup shift
independently. Consequently, much better es-
timates of µ and �2

Z can be obtained. Table
2 illustrates the ARLs of the three compet-
ing charts when each subgroup contains five
wafer profiles and when �2

Z shifts. The perfor-
mance of the spatial charts is greatly enhanced
and exceeds that of the LPC in both cases of
✓1,2 = 0.4 and ✓1,2 = 0.6. If the measurement
points of all profiles are the same, the compu-
tational burden will not significantly increase
because the covariance matrices of all profiles
(⌃(⇠2)’s) are the same. In that case, the compu-
tational burden is mainly derived from the in-
version of ⌃(⇠2), which is calculated only once
in each iteration step.

• Shifts in ✓1. The ISC and SSC can e�ciently de-
tect increases in this parameter and the ARLs
are not the same when shifts in ✓1 are posi-
tive or negative with the same magnitude, as
in the case where �2

" shifts as previously dis-
cussed. When ✓1 increases, the ARLs decrease;
but when ✓1 decreases, if the magnitude of the
decrease is minor, the ARLs of these charts
may increase. The reason for this phenomenon
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is similar to the case in which �2
" shifts. The

shift in ✓1 may not only a↵ect the mean value
of ✓̂1, but may also a↵ect its variance: when ✓1

decreases, the variance of ✓̂1 decreases. Regard-
ing the LPC, for ✓1 = 0.4, a larger ✓1 results in
a smaller ARL; for ✓1 = 0.6, a larger ✓1 results
in a larger ARL. These results indicate that
the performance of the LPC may vary depend-
ing on the in-control parameter values and that
the LPC is not suitable for monitoring shifts in
the strengths of the spatial correlations.

Overall, the SSC exhibits the best performance
for monitoring shifts in linear coe�cients µ and �1.
When each subgroup contains one single surface,
the surface charts (ISC and SSC) can detect shifts
in �2

Z , but may not as e�ciently as the LPC can
when spatial correlation is strong. However, when
each subgroup contains multiple surfaces, the sur-
face charts(SSC and ISC) can detect shifts in �2

Z and
✓1 more e�ciently than the LPC. Between the ISC
and SSC, the SSC is more sensitive to shifts in the
trend component, whereas the ISC is more sensitive
to shifts in the variation component.

Conclusion and Remarks

In this paper, we developed an innovative surface
control chart by proposing a method to detect shifts
in parameters in the Gaussian-Kriging model. Us-
ing the Gaussian-Kriging model in surface monitor-
ing has the following merits: the spatial correlation
among data points on the surface is considered, pa-
rameters in the model have specific engineering im-
plications, and various types of out-of-control condi-
tions can be detected. An investigation of real surface
data demonstrates that the profiles of wafer thick-
ness are indeed spatially correlated. Although our
monitoring scheme is not uniformly better than the
conventional multiple linear profile chart, it can de-
tect changes in the profile’s spatial patterns more
e�ciently, as long as the profile is adequately repre-
sented by a Gaussian-Kriging model.

Two-dimensional data are widely used in mod-
ern manufacturing processes. This study is one of
the few to address the statistical monitoring of such
data. We believe that considerable work remains to
be undertaken. First, a more rigorous Phase I anal-
ysis should be considered. Specific questions worth
exploring include whether the data are suitable for
our monitoring scheme, what constitutes a suitable
correlation function, and which observations in the
historical data are outliers. Second, additional com-

parison studies should be performed. For instance,
our method can be further compared with those of
Colosimo (2008), Jensen et al. (2008), or Qiu et al.
(2010), especially when the simulated profiles are
generated from di↵erent spatial models or real data
are employed. Third, to increase the e�ciency of the
control chart and simultaneously decrease the com-
putational burden for wafer inspection, the determi-
nation of the number of data points and the measure-
ment sites on the wafer surface in on-line monitoring
deserve detailed investigation.
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Appendix:
Details on the Algorithm for

Calculating MLEs

We now illustrate the algorithm for solving the
MLE of ⇠. The algorithm combines the general pro-
cedure introduced by Fang et al. (2006) and some
modifications recommended by Mardia and Marshall
(1984).

Consider maximizing the log-likelihood function
of y,

l(y | ⇠) = �n

2
log(2⇡)� 1

2
log(det(⌃(⇠2)))

� 1
2
(y �B⇠1)0⌃(⇠2)�1(y �B⇠1).

The Fisher information matrix of ⇠ is defined as

I(⇠) = E
⇥
r⇠l(y|⇠)

⇤2
.

Mardia and Marshall (1984) proved the Fisher in-
formation of the model in Equation (5) is blockwise
diagonal and has the representation

I(⇠) = diag(I1(⇠), I2(⇠)),

where I1 and I2 are the Fisher information matrix
with respect to ⇠1 and ⇠2 individually. They have
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following expressions:

I1(⇠) = y0⌃�1(⇠2)y

and the (i, j)th element of I2(⇠) is

[I2(⇠)]i,j

=
1
2
tr

 
⌃�1(⇠2)

@

@⇠(i)
2

⌃(⇠2)⌃�1(⇠2)
@

@⇠(j)
2

⌃(⇠2)

!
,

where ⇠̂(k)
i is the kth parameter in ⇠̂i, i = 1, 2.

Next we show the algorithm that iteratively up-
dates the values of ⇠̂1 and ⇠̂2 until they converge.

Step 1: Select the Initial Value of ⇠̂2

Fang et al. (2006) suggest setting the initial value
of ⇠̂1 to the value of its least-square estimator:
(B0B)�1B0y. However, this may reduce the conver-
gence speed in iteration and numerical problems may
arise frequently. Our experiments show that, if we
initially set ⇠̂2 as ⇠̂2’s in-control value, significantly
fewer iterations will be needed.

Step 2: Update ⇠̂1 Using ⇠̂2

The profile MLE of ⇠1 given ⇠2 = ⇠̂2 is its gener-
alized least-square estimator,

⇠̂1 = (B0⌃(⇠̂2)�1B)�1B0⌃(⇠̂2)�1y.

Step 3: Update ⇠̂2 Using ⇠̂1

Mardia and Marshall (1984) suggested using the
one-step Fisher scoring algorithm to update the value
of ⇠2. Denote ⇠̂2 as the original value of ⇠̂2 and ⇠̂02 as
the new value. We use

⇠̂02 = ⇠̂2 + I�1
2 (⇠̂)V2(y; ⇠̂)

to update ⇠̂2. Here, V2(y; ⇠̂) is the score function with
respect to ⇠2,

V2(y; ⇠̂) = r⇠2 l(y|⇠̂)

= r⇠2


�1

2
log det(⌃(⇠̂2))

� 1
2
(y �B⇠̂1)0⌃�1(⇠̂2)(y �B⇠̂1)

�

= �1
2
r⇠2

h
log(det(⌃(⇠̂2)))

i

� 1
2
(y �B⇠̂1)0r⇠2

h
⌃�1(⇠̂2)

i
(y �B⇠̂1),

(12)

which can be calculated using the following two ma-
trix di↵erentiation formulae:

@

@⇠̂(k)
2

log(det(⌃(⇠̂2)))

=
mX

j=1

mX
i=1

(⌃�1(⇠̂2))i,j ⇥
 

@

@⇠̂(k)
2

⌃(⇠̂2)

!
i,j

,

@

@⇠̂(k)
2

⌃�1(⇠̂2)

= ⌃�1(⇠̂2)

 
@

@⇠̂(k)
2

⌃(⇠̂2)

!
⌃�1(⇠̂2),

k = 1, 2, 3, 4.

Step 4

Run Step 2 and Step 3 iteratively until ⇠̂1 and ⇠̂2

converge.
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